Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present a study of the double-lined spectroscopic binary HD 21278 that contains one of the brightest main-sequence stars in the youngαPersei open cluster. We analyzed new spectra and reanalyzed archived spectra to measure precise new radial velocity curves for the binary. We also obtained interferometric data using the CHARA Array at Mount Wilson to measure the sky positions of the two stars and the inclination of the ∼2 mas orbit. We determine that the two stars have masses of 5.381 ± 0.084M⊙and 3.353 ± 0.064M⊙. From isochrone fits, we find the cluster’s age to be 49 ± 7 Myr (using PARSEC models) or 49.5 ± 6 Myr (MIST models). Finally, we revisit the massive white dwarfs that are candidate escapees from theαPersei cluster to try to better characterize the massive end of the white dwarf initial–final mass relation. The implied progenitor masses challenge the idea that Chandrasekhar-mass white dwarfs are made by single stars with masses near 8M⊙.more » « lessFree, publicly-accessible full text available July 17, 2026
- 
            Abstract Planets are a natural byproduct of the stellar formation process, resulting from local aggregations of material within the disks surrounding young stars. Whereas signatures of gas-giant planets at large orbital separations have been observed and successfully modeled within protoplanetary disks, the formation pathways of planets within their host star’s future habitable zones remain poorly understood. Analyzing multiple nights of observations conducted over a short, 2 month span with the MIRC-X and PIONIER instruments at the CHARA Array and VLTI, respectively, we uncover a highly active environment at the inner-edge of the planet formation region in the disk of HD 163296. In particular, we localize and track the motion of a disk feature near the dust-sublimation radius with a pattern speed of less than half the local Keplerian velocity, providing a potential glimpse at the planet formation process in action within the inner astronomical unit. We emphasize that this result is at the edge of what is currently possible with available optical interferometric techniques and behooves confirmation with a temporally dense followup observing campaign.more » « lessFree, publicly-accessible full text available May 19, 2026
- 
            Abstract The Cepheid AW Per is a component in a multiple system with a long-period orbit. The radial velocities of Griffin cover the 38 yr orbit well. An extensive program of interferometry with the Center for High Angular Resolution Astronomy array is reported here, from which the long-period orbit is determined. In addition, a Hubble Space Telescope high-resolution spectrum in the ultraviolet demonstrates that the companion is itself a binary with nearly equal-mass components. These data combined with a distance from Gaia provide a mass of the Cepheid (primary) ofM1= 6.79 ± 0.85M⊙. The combined mass of the secondary isMS= 8.79 ± 0.50M⊙. The accuracy of the mass will be improved after the fourth Gaia data release, expected in approximately two years.more » « less
- 
            Context.V838 Mon is a stellar merger remnant that erupted in a luminous red nova event in 2002. Although it has been well studied in the optical, near-infrared, and submillimeter regimes, its structure in the mid-infrared wavelengths remains elusive. Over the past two decades, only a handful of infrared interferometric studies have been performed, suggesting the presence of an elongated structure at multiple wavelengths. However, given the limited nature of these observations, the true morphology of the source has not yet been conclusively determined. Aims.By performing image reconstruction using observations taken at the VLTI and CHARA, we aim to map out the circumstellar environment in V838 Mon. Methods.We observed V838 Mon with the MATISSE (LMNbands) and GRAVITY (Kband) instruments at the VLTI as well as the MIRCX/MYSTIC (HKbands) instruments at the CHARA array. We geometrically modelled the squared visibilities and the closure phases in each of the bands to obtain the constraints on the physical parameters. Furthermore, we constructed high-resolution images of V838 Mon in theHKbands using the MIRA and SQUEEZE algorithms to study the immediate surroundings of the star. Lastly, we also modelled the spectral features seen in theKandMbands at various temperatures. Results.The image reconstructions show a bipolar structure that surrounds the central star in the post-merger remnant. In theKband, the super-resolved images show an extended structure (uniform disk diameter ~1.94 mas) with a clumpy morphology that is aligned along a north-west position angle (PA) of −40°. On the other hand, in theHband, the extended structure (uniform disk diameter ~1.18 mas) lies roughly along the same PA. Yet the northern lobe is slightly misaligned with respect to the southern lobe, which results in the closure phase deviations. Conclusions.The VLTI and CHARA imaging results show that V838 Mon is surrounded by features resembling jets that are intrinsically asymmetric. This is further confirmed by the closure phase modelling. Further observations with VLTI can help to determine whether this structure shows any variations over time and also if such bi-polar structures are commonly formed in other stellar merger remnants.more » « less
- 
            Context.T Tauri stars are low-mass young stars whose disks provide the setting for planet formation, which is one of the most fundamental processes in astronomy. Yet the mechanisms of this are still poorly understood. SU Aurigae is a widely studied T Tauri star and here we present original state-of-the-art interferometric observations with better uv and baseline coverage than previous studies. Aims.We aim to investigate the characteristics of the circumstellar material around SU Aur, and constrain the disk geometry, composition and inner dust rim structure. Methods.The MIRC-X instrument at CHARA is a six-telescope optical beam combiner offering baselines up to 331 m. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrained the physical parameters of the disk. Results.Image reconstruction reveals a highly inclined disk with a slight asymmetry consistent with inclination effects obscuring the inner disk rim through absorption of incident star light on the near side and thermal re-emission/scattering of the far side. Geometric models find that the underlying brightness distribution is best modelled as a Gaussian with a Full-Width Half-Maximum of 1.53 ± 0.01 mas at an inclination of 56.9 ± 0.4° and a minor axis position angle of 55.9 ± 0.5°. Radiative transfer modelling shows a flared disk with an inner radius at 0.16 au which implies a grain size of 0.14 μm assuming astronomical silicates and a scale height of 9.0 au at 100 au. In agreement with the literature, only the dusty disk wind successfully accounts for the near infrared excess by introducing dust above the mid-plane. Conclusions.Our results confirm and provide better constraints than previous inner disk studies of SU Aurigae. We confirm the presence of a dusty disk wind in the cicumstellar environment, the strength of which is enhanced by a late infall event which also causes very strong misalignments between the inner and outer disks.more » « less
- 
            ABSTRACT We report near-infrared long-baseline interferometric observations of the Hyades multiple system HD 284163, made with the Center for High Angular Resolution Astronomy array, as well as almost 43 yr of high-resolution spectroscopic monitoring at the Center for Astrophysics. Both types of observations resolve the 2.39 d inner binary, and also an outer companion in a 43.1 yr orbit. Our observations, combined with others from the literature, allow us to solve for the 3D inner and outer orbits, which are found to be at nearly right angles to each other. We determine the dynamical masses of the three stars (good to better than 1.4 per cent for the inner pair), as well as the orbital parallax. The secondary component (0.5245 ± 0.0047 M⊙) is now the lowest mass star with a dynamical mass measurement in the cluster. A comparison of these measurements with current stellar evolution models for the age and metallicity of the Hyades shows good agreement. All three stars display significant levels of chromospheric activity, consistent with the classification of HD 284163 as an RS CVn object. We present evidence that a more distant fourth star is physically associated, making this a hierarchical quadruple system.more » « less
- 
            Mérand, Antoine; Sallum, Stephanie; Sanchez-Bermudez, Joel (Ed.)The Michigan Young STar Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the United States National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA array in July 2021, with baselines up to 331 meters, MYSTIC provides a maximum angular resolution of λ/2B ∼ 0.7 mas. The instrument injects phase corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC utilizes a high frame rate, ultra-low read noise SAPHIRA detector, and implements two beam combiners: a 6-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a 4-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J+H band) instrument for simultaneous fringe-tracking and imaging, and shares its software suite with the latter to allow a single observer to operate both instruments. Herein, we present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future.more » « less
- 
            Abstract We present measurements of the interferometrically resolved binary star system 12 Com and the single giant star 31 Com in the cluster Coma Berenices. 12 Com is a double-lined spectroscopic binary system consisting of a G7 giant and an A3 dwarf at the cluster turnoff. Using an extensive radial velocity data set and interferometric measurements from the Palomar Testbed Interferometer and the Center for High Angular Resolution Astronomy array, we measured massesM1= 2.64 ± 0.07M⊙andM2= 2.10 ± 0.03M⊙. Interferometry also allows us to resolve the giant and measure its size asR1= 9.12 ± 0.12 ± 0.01R⊙. With the measured masses and radii, we find an age of 533 ± 41 ± 42 Myr. For comparison, we measure the radius of 31 Com to be 8.36 ± 0.15R⊙. Based on the photometry and radius measurements, 12 Com A is likely the most evolved bright star in the cluster, large enough to be in the red giant phase, but too small to have core helium burning. Simultaneous knowledge of 12 Com A’s mass and photometry puts strong constraints on convective core overshooting during the main-sequence phase, which in turn reduces systematic uncertainties in the age. Increased precision in measuring this system also improves our knowledge of the progenitor of the cluster white dwarf WD1216+260.more » « less
- 
            Context. Stellar evolution models are highly dependent on accurate mass estimates, especially for highly massive stars in the early stages of stellar evolution. The most direct method for obtaining model-independent stellar masses is derivation from the orbit of close binaries. Aims. Our aim was to derive the first astrometric plus radial velocity orbit solution for the single-lined spectroscopic binary star MWC 166 A, based on near-infrared interferometry over multiple epochs and ∼100 archival radial velocity measurements, and to derive fundamental stellar parameters from this orbit. A supplementary aim was to model the circumstellar activity in the system from K band spectral lines. Methods. The data used include interferometric observations from the VLTI instruments GRAVITY and PIONIER, as well as the MIRC-X instrument at the CHARA Array. We geometrically modelled the dust continuum to derive relative astrometry at 13 epochs, determine the orbital elements, and constrain individual stellar parameters at five different age estimates. We used the continuum models as a base to examine differential phases, visibilities, and closure phases over the Br γ and He I emission lines in order to characterise the nature of the circumstellar emission. Results. Our orbit solution suggests a period of P = 367.7 ± 0.1 d, approximately twice as long as found with previous radial velocity orbit fits. We derive a semi-major axis of 2.61 ± 0.04 au at d = 990 ± 50 pc, an eccentricity of 0.498 ± 0.001, and an orbital inclination of 53.6 ± 0.3°. This allowed the component masses to be constrained to M 1 = 12.2 ± 2.2 M ⊙ and M 2 = 4.9 ± 0.5 M ⊙ . The line-emitting gas was found to be localised around the primary and is spatially resolved on scales of ∼11 stellar radii, where the spatial displacement between the line wings is consistent with a rotating disc. Conclusions. The large spatial extent and stable rotation axis orientation measured for the Br γ and He I line emission are inconsistent with an origin in magnetospheric accretion or boundary-layer accretion, but indicate an ionised inner gas disc around this Herbig Be star. We observe line variability that could be explained either with generic line variability in a Herbig star disc or V/R variations in a decretion disc scenario. We have also constrained the age of the system, with relative flux ratios suggesting an age of ∼(7 ± 2)×10 5 yr, consistent with the system being composed of a main-sequence primary and a secondary still contracting towards the main-sequence stage.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
